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Analytic solution is given in the steady-state limit t---, ~ for the system of 
master equations describing a random walk on one-dimensional periodic lattices 
with arbitrary hopping rates containing one mobile directional impurity (defect 
bond). Due to the defect, translational invariance is broken, even if all other 
rates are identical. The structure of master equations leads naturally to the 
introduction of a new entity, associated with the walker-impurity pair which we 
call the quasiwalker. The velocities and diffusion constants for both the random 
walker and impurity are given, being simply related to that of the quasiparticle 
through physically meaningful equations. Applications in driven diffusive 
systems are shown, and connections with the Duke-Rubinstein reptation 
models for gel electrophoresis are discussed. 

KEY WORDS: Random hopping model; bond impurity; diffusion; asym- 
metric exclusion process; electrophoresis. 

1. I N T R O D U C T I O N  

In  equi l ibr ium statistical mechanics the n u m b e r  of exactly (analyticaly) 
solvable models is very limited (for a review see ref. 1). In  nonequ i l ib r ium 
statistical mechanics this n u m b e r  is considerably smaller, and  no review 
has been published,  to our  best knowledge, so far. Par t  of this difference 
lies in the star t ing points.  In  equi l ibr ium physics, one usually begins with 
the wel l -known Bol tzmann  distr ibution.  By contrast ,  arr iving at this step is 
already nontr ivial ,  even for steady states, since one must  solve, say, a 
master  equa t ion  first. To find an analytical  solut ion for such equat ions  for 
typical nonequ i l ib r ium systems is usually impossible because of the very 
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large number of different equations involved, since the unknown is a func- 
tion of the configurations of the system. However, we can hope to find 
analytic solutions if the dimensionality of our system is low enough. As an 
example, consider the random walk of a single particle on a one-dimen- 
sional (1D) lattice, with time-independent hopping rates W;.j, where Wi.j 
represents the probability for the particle to jump from site j to site i in one 
step (or per unit time). These rates may be arbitrary, so that they are not 
required to satisfy the condition for detailed balance, so as to describe a 
general nonequilibrium system. With the additional assumptions that (a) 
only jumps to the nearest sites are allowed (1 i - J l  = I) and (b) the periodic 
boundary condition (PBC) is imposed, this model was analyticaly solved in 
the steady-state limit by Derrida in 1983. t2~ Explicit expressions for the 
steady-state distribution, velocity, and diffusion constant were given. 
However, if say, jumps to next nearest neighbors are allowed, an analytical 
solution seems to be impossible to give) 2~ On the other hand, since 1983, 
several other types of 1D systems (e.g., refs. 3 and 4) have been solved. 

In the next two subsections of the Introduction we explicitly present 
on a "checkerboard" the one-dimensional periodic hopping model without 
and with a mobile directional impurity. Then we give a short description 
of the main body of the paper. 

1.1. One-Dimensional  Hopping Model  W i t h o u t  Impuri t ies 

The hopping model presented by Derrida p'~ can best be visualized as 
an ( N +  1 ) x l  checkerboard, i.e., a string of N +  1 squares. This is filled 
with N pieces (particles) numbered from 1 to N (from left to right) and one 
hole, which will play the role of the random walker (Fig. 1). The periodic 
boundary condition is equivalent to identifying the squares at the two ends 
as nearest neighbors. By saying "that the hole is at site n" we mean that the 
empty square is found in between particles with labels n and n + 1. Since 
the dynamics will be restricted to particle-hole exchange only, we may 
regard to hole as the random walker, and will use the terms "hole" and 
"walker" interchangeably. The proposition "the hole jumps from site n to 
site n + 1 in the next time step" on Fig. I is equivalent to "shifting the hole 

F'I| | | I| | | 
Fig. 1. The lranslationally invarianl one-dimensional hopping model with periodic boundary 
conditions, on a chercherboard. The particles are represented by numbered circles (pieces). 
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from the square in between particles n and n + 1 to the square in between 
particles n + 1 and n + 2." The rules of evolution are as follows: 

1. A square can be at most occupied by a single particle. 

2. A particle can interchange squares only with the empty square 
(hole) and only if that is a nearest neighbor. 

3. The particles are not allowed to interchange positions among 
themselves, 

4. Whenever the hole at site n jumps to the left (to site n - 1 ), it does 
with probability W,,_ t .... and, for a jump to the right (to site n + 1), the 
probability involved is W,, + i,,- 

Note that the system above is translationally invariant, in the sense 
that the jump rate of any particular particle-hole pair is independent of its 
location on the checkerboard. In particular, after the hole jumps through 
the entire system a few times (effectuating complete revolutions) the string 
of particles will be displaced relative to the "board." Nevertheless, the 
physics of the evolution remains unaltered. Next, we break this invariance 
by introducing a "kink" in the checkerboard. 

1.2. The Model  w i th  One Mobi le  Directional  Impuri ty  

In this paper we introduce a mobile directional impurity into the peri- 
odic hopping model above. In terms of the checkerboard, this is specific 
"bond" between two adjacent squares, such that rates of particle-hole 
exchanges across it are different (in the sense that they differ from the W 
rates). Thus, we also refer to it as a "defect bond" (DB). Since the string 
of particles can be displaced relative to the checkerboard, this DB can move 
relative to the string. In this sense, we use the term "mobile directional 
impurity." A more transparent way to display the model is represented in 
Fig. 2, where the DB is shown as a kink in the cherckerboard. Only across 
this kink are the probabilities of the particle-hole exchange different from 
the W's specified above. The motivation for such a kink will be discussed 
below. Here, we simply state the model. In addition to the rules 1-4 from 
the previous subsection, we have on more, specifying the jump rates 
through the kink: 

5. The probabilities for the interchange of the hole with a particle 
through the DB (thick dashed line) are q if the hole moves upward and q' 
if the move downward, independent of the particle involved. This is a sim- 
plifying assumption, allowing less involved formulas. Our methods will lead 
to an analytic solution even if these probabilities do depend on the particle. 
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E 

Fig. 2. Translational invariance is broken by introducing a kink in the checkerboard 
(lattice). The jumps across the kink (dashed line) obey different rates, i.e., q and q', inde- 
pendent of the particle involved. If the particles carry charges, then in the case of an external 
electric field E the jumps across the kink are not biased. 

Note that in both models the order of the particles is never changed, 
i.e., there is no mixing among the particles. Therefore, when the hole is in 
between particles n and n + 1, the hopping probability to the left (right) is 
always IV,,_ ~.,, (W,,+I.,), except when the DB is involved. However, the 
string of particles as a whole shifts with respect to the checkerboard (and 
the DB) as the hole wanders. Fixing our reference fi'ame to the string of  
particles, which turns out to be mathematically convenient, we see that the 
DB "moves" if and only if the hole passes through it. Further, the jump 
rates from site n to n+_ 1 are not always W,,+~ .... but take on the value q 
or q' whenever the jump is across the DB. Naively, one may expect that an 
analytic solution is impossible, given the seemingly time-dependent rates. 
Nevertheless, we are able to find a solution. The key observation is the 
existence of a specific linear combination of the positions of the hole and 
the DB, with which the system of master equations can be rewritten in a 
form describing the hopping of a single random walker (called quasi- 
walker) on a chain of length N ( N +  1). Exploiting the results of Derrida, 
we can explicitly compute the probability distribution, velocity, and 
diffusion constants of the quasiwalker, as well as those for the hole and 
the DB. 

An immediate application for the model with directional impurity is 
a generalized asymmetric exclusion process (ASEP)/2"3~ Consider the 
pieces as charged particles. More precisely, let the particles be charged with 
Q, and let us apply an external electric field E pointing along the chain 
(see Fig. 2). Neglecting the interaction among charges, the hopping rates 
are solely determined by the influence of E on the charges. Away from 
the kink, these rates would be biased, due to E. However, across the kink 
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(or DB), particle hops are perpendicular to the external field, so that the 
corresponding probabilities (q and q') are not biased by E. 

Another application, which is also the physical motivation of our 
model, comes from the connection to the reptation model of Duke and 
Rubinstein for gel electrophoresis/~ In ref. 6 we introduced a model for 
electrophoresis of polymers with impurities, i.e., polymers having segments 
(reptons) insensitive to an external electric field E. We showed that the 
effect of a single impurity is equivalent to having a single kink in the ASEP 
above. The drift velocity of the polymer chain, being related in this model 
to that of our random walker, is therefore directly affected. The details of 
this application, which is a particular case of our model, are presented in 
the last section of this paper. 

The structure of the paper is as follows: in Section 2 we provide a 
precise formulation for the model with one mobile directional impurity, at 
the level of master equations. Here we show that the structure of these 
equations leads us to a natural definition of a new entity, namely the 
quasiwalker, which stands for the hole-DB couple. A full solution for the 
steady-state probability distribution is then given. From that, the expres- 
sions for the velocity and diffusion constant (in the steady state) of this 
quasiwalker are derived. Section 3 is devoted to a detailed description of 
the original system in terms of the quasiwalker. Using a technique from the 
theory of random walks on rings:(2,7) (and referred to as the replication 
method by us), the expressions for the velocity and diffusion constant 
for the hole and the DB (with respect to the chain) are obtained. The 
remaining sections deal with special cases and applications. 

2. D E F I N I T I O N  OF THE M O D E L  A N D  THE Q U A S I W A L K E R  

In this section we present another representation of our model which 
is equivalent to, but simpler than, that shown in Fig. 2. Though there are 
two moving objects (the hole and the defect bond), the motion of the DB 
is completely determined by the dynamics of the hole, so that there is, effec- 
tively, only one degree of freedom. This single coordinate is than associated 
with the quasiwalker. 

Instead of a chain on a kinked checkerboard, our system can be 
redrawn as'in Fig. 3. Here we have our fixed reference frame to be that of 
the particle chain, arbitrarily choosing one particle as the "first" in the 
labeling 1, 2 ..... N. Representing the particles (hole) by solid (open) circles, 
we see that the hole is located in between the particles, i.e., at positions 
denoted by short vertical lines. The DB (which is the kink in Fig. 2) can 
also be thought of as a "wanderer" among the particles. We denote its posi- 
tion by a long vertical line. The only complication arises when the hole 
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Fig. 3. An equivalent representation of the model of Fig. 2. The solid circles represent 
particles. The short vertical lines mark the possible positions of the hole represented by an 
open circle. The DB is shown as a long, solid vertical line. As the hole passes through the DB, 
the latter encounters a one-step shift in the same direction, (aJ-(d). 

comes "in contact" with the DB, i.e., when both of them are located 
between two successive particles. Then there are two distinct states of the 
system, depending on which side of the DB we find the hole. As a result, 
we are forced to draw two short vertical lines on either side of the DB. 

To keep track of these positions we introduce the following variables: 

�9 Associate the position of the DB with b, i.e., when the defect bond 
is between particles b and b + 1. Thus, b ~ [ 1, N] .  

�9 Let m denote the position of the hole relative to the DB. Since the 
hole occupies a square in the checkerboard, it is clear that this square can 
be on either side of the DB (shown by the solid line in Fig. 2). Thus, m 
assumes one more value than b. We choose m ~ [0, N]  and let m = 0 and 
N be associated with the positions next to the DB (see Fig. 3). 

For clarity, let us illustrate the dynamics of the hole near the DB. 
There are four representations of the same piece of chain at consecutive 
time steps. In the first (Fig. 3a), the hole is at m = N - 1  and the bond is 
at b. In the next step, the hole interchanges with particle b, arriving at 
m = N  (Fig. 3b). Suppose it next interchanges with particle b +  1. In the 
checkerboard, this would be an exchange "across the DB," so that the DB 
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will now be found between particles b + 1 and b + 2. At the same time, the 
hole will be "on the other side of the DB." Thus, both the hole and the DB 
arrive at new positions (Fig. 3c). Finally, according to our scheme, we must 
"relabel" m accordingly to the value m = 0. In the last frame, the hole 
moves further to the right. The DB is not affected, so that only m increases 
to 1 (Fig. 3d). Of course, if the hole moves to the left, then we must reverse 
the previous process. Let us emphasize that in the single move between 
Figs. 3b and 3c, b increments by 1, while m drops from N to 0. These rules 
can easily be verified by playing on the checkerboard. 

2.1. The System of Master  Equations 

The full probabilistic information about our system is contained in 
P(b, m; t), the probability to find the DB and the hole at b and m, respec- 
tively, at time t. The time evolation of P will be controlled by the jump 
rates of the hole, defined in rules 1-5 above: Wi, j, q, and q'. Recall that the 
subscripts to W refer to the positions of the hole being between particles 
i and i +  1, etc. In terms of our variables b and m, this position is clearly 
just b + m, modulo N, since our chain is a closed one of N particles. Thus, 
it is natural to introduce the notation 

h Wh+,,,.h+,,,, (1) W~l.nl' ~ 

with the understanding 

Wi+N.j+N = Wi, j (2) 

Since the hole can only exchange with its neighboring particles, the restric- 
tion [ m - m ' [  = 1 applies in (1). Combining these remarks and following 
the special rules associated with the DB (Fig. 3), we obtain the evolution 
of P in terms of a system of master equations: 

m = 0: 

r n # 0 ,  N: 

m = N :  

8,P(b, O ) = P ( b -  1, N)q + P(b, 1) W0h~ 

- P(b,  O)(q' + W~.o) 

8 , P ( b , m ) = P ( b , m  1) b + P ( b , m + l )  W h - -  W i l l ,  I n -  ] 111,111-~- [ 

P(b, m)( h h - w ; , , _ , , , , , + w ; , , + , , , , , )  (3) 

8,P(b, N) =P(b, N -  1) t, WN, N_ t + P(b + 1, O) q' 

--  e (  b, N) (  b W N -  1, N -]- q) 

where we have suppressed t for simplicity. 

822/87/3-4-6 
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2.2. The Steady-State L i m i t  

One of our central interests is the steady-state limit. Assuming that it 
exists, let us define 

X~, - lim P(b, m; t) (4) 

Then, from (3), these satisfy the following set of linear equations: 

m = 0 :  

m:/:O, N: 

re=N:  

X h W  h +Xhu-'q--Xho(q' + W~o)=O I 0 ,1  

x2,+, w2,.,,,+, + x::,_, w2, ..... , - x 2 , (  w:;_, . , , ,+ w2,+,.,,,)=0 
,, h + X ~ + , q , _ X ~ ( q +  h W N -  i.,v) = 0 XN-  l W,v. N- I 

(5) 

From (8), we find 

x::, w2 ,_ , , , , , -  xg,_ , .... , 

Now, one can rewrite (5) as 

m = 0 :  c ~ = X h o q ' - X ~ - ' q  (7) 

m ~ O , N :  h b c,,,+, =c,,, (8) 

m = N :  CN=h Xoh+lq,_XhNq (9) 

b b ~ . b 
ON=ON__ [ "" = C 2 = C h l  ( [ 0 )  

Examining the right-hand sides of (7) and (9), we can go one step further: 

t, h+l (11) CN~-C 1 

In other words, none of these c's depends on b or m, so that we might as 
well write 

c~,=c (12) 

This equation can be easily interpreted as: the probability current density 
in the steady state is a constant. This result is typical for systems with a 
periodic, one-dimensional configuration space, where the current has only 

(6) 

These equations can be solved by introducing the steady-state probability 
current densities 
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Fig. 4. 

b = N  

b = N - 1  

b + l  

b = l  

{ 

m = N  

r n = l  

m = 0  

m = N  

m = l  

m = 0  

m = N  

r n  

N N X N W N 
X N W N - I . N  " N-I N.N-I = C 

N N N N 
X l W o j  - X o W l , o  = c  

X ~ q '  - x ~ " q  = c 

xN-1wN-1 x N - t w W l  
N N - 1 , N  - N - I  N . N - I  = C 

b + l  b + l  b + l  b + l  
X I Wo,  I - X  o W l .  o = c  

x ~ + ' q  ' - x ~ q  = 

b b b b 
XNWN.I. N XN_IWN,N. 1 = C 

x b w  b X b W b 
m m - l . m -  m-1 m.m-I  = C 

b b b b 
m = 1 XiWo.  t - X o W l ,  0 = C 

m = 0 X~q'- - X~'lq- = c 

m = N  

m = N  

m = l  

m = 0  

x b - l w b - I  -V b- 1 l i / b -  I 
N N - I , N  - Z X N - I  * "  N , N - I  = c  

X I W  I X 1 W l 
N N - I , N  - N - I  N , N - I  = C 

I 1 I I 
X t W o j  - XoWl ,  o = c 

x0'q' - x ~ q  = c 

The rewri t ten system, b labels  the blocks,  m the co r re spond ing  equat ions .  

a single component and can be fixed by the conservation law. Since we 
have two variables (b, m), we may regard our configuration space as "two 
dimensional," so that (12) is perhaps surprising. The resolution is best 
displayed by explicitly writing the entire system (7)-(9) using (12), as in 
Fig. 4. Note that, between the lowest and highest equations, we have the 
periodic boundary condition (2), i.e., X ~  and X u+~ - X ~ .  Thus, the 
whole system of equations can be regarded as those for a single, periodic 
chain. Explicitly, we introduce 

,Ffk ------ X',h,,, b e [ 1 ,  N] ,  m e [ 0 ,  N]  (13) 
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k -  1 + ( b -  1)(N+ 1 ) + m  (14) 

simply numbers the equations of Fig. 4 starting from the bottom. Thus, 
k ~ [ 1, M],  with 

M = N ( N +  1) (15) 

Observe that k uniquely  determines the pair (b, m) and vice versa: 

k - 1  
b = [ ~ - - ~ 1  +1 (16) 

m = ( k -  1) m o d ( N +  1) (17) 

where Ix ]  represents the integer part of the real number x, To display the 
structure of this single periodic chain more clearly, let us introduce 

ff'k.t--, = W~ ...... , and f f ' k_ , . k  = -- W;h,,_, .... (18) 

for m e [ 1, N]. For m = 0, we first define 

kb = 1 + ( b -  1)(N+ 1) (19) 

Referring to (7) and (9), we see that 

ff'*h.*~- ' = q and I~'kh- ,,kh = q '  (20) 

for all b. Finally, to stress the M-periodicity of these rates, we write 

I~k + M.,+ M = l~k., (21) 

With this notation the system from Fig. 4 reads 

X ~ W k _ l . k - - X k _ l I ~ k . k _ l = C ,  k ~ [ 1 ,  M] (22) 

Recast in the form of (22), our system is exactly the one studied by 
DerridaJ 21 The only difference is that in our case the )(k stands for the 
steady state of the "defect bond-hole" pair, as opposed to a single particle 
as in ref. 2. We will refer to this new entity as a "quasiwalker" and treat it 
as a single random walker on a chain of length M. 
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Lastly, we remark that not only can the steady-state limit be reduced 
to the case in ref. 2, but the full time dependence of our system (3) can also 
be mapped. Defining 

P k ( t )  =- P ( b ,  m ;  t )  (23) 

we can write the system of master equations (3) as 

O , f f  k = ~ + , IgZk. k + , + l ~  _ , f fZ  k . k _ , - -  P k ( W k + , . k + lgZ k _ , . k ) (24) 

2.3. A p p l i c a t i o n  of Derr ida 's  Resul ts  to  the  Q u a s i w a l k e r  

In this section we apply directly the results from ref. 2 to obtain the 
steady-state probability distribution, velocity, and diffusion constant of our 
quasiwalker. As expected, all quantities are rational functions of the jump 
rates. Thus, 

X k  = l " f k  (25) 

where 

1 F M- I 
f k ~  I.~k + [ 1+  E 

I.k i =  I 

and F is a normalization constant: 

fi ff'k +j-- t.k +~] (26) 
j = l  ~ I , k + j  

F =  trk (27) 
k I 

The velocity and the diffusion constant are given, respectively, by 

and 

k=, ff'k + t.kJ (28) 

. [ M M  M 1 v M + 2  (29) O=V 2 V E ak E i F k + , + M  ~ .  f f ' k + , . k u k r k  - -  2 
k ~ l  i = 1  k = l  

where 

[ 'fI ] - = _1 1 + Y' f f 'k - j .k§  (30) 
uk-- ff'k+l.k i=t j = l  f f ' k+ , - j . , - j J  
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We would like to make a remark at this point: the derivation of the steady- 
state values for the velocity and diffusion constant in ref. 2 is based on a 
few very reasonable assumptions about the existence and form of these 
quantities. The same assumptions can be made in our case, too, which we 
highlight in Section 3. 

While it is straightforward to arrive at (25)-(27), a subtle process is 
involved in finding (28) and (29). Before proceeding, let us review this 
method, ~2~ which we call "replication." Instead of studying a finite chain 
with periodic boundary conditions, replicate it into an infinite periodic 
chain. Thus, we allow, for example, the indices i, j in ff-;.j to be any integer, 
together with the periodicity constraint (21). Similarly, the distribution/5(t) 
in (23) is now defined for all k~  [ - ~ ,  oo] and satisfies (24) with (21). To 
compute the steady-state quantities defined for the original chain, we must 
sum over all equivalent sites on the replicated chain. On the other hand, 
the velocity and diffusion constants can be found from the first- and 
second-order moments of/~k. Introducing 

x(t)= ~ kPk(t) and x2(t)= L kZfik(t) (31) 
k =  -c r . .  k =  - , ~  

we find that the velocity is naturally given by 

d 
V= ,lina_ ~tx(t) (32) 

while the diffusion constant is given by 

d 9 D = ,li m ~ [ x , ( t )  - (x(t))-] (33) 

Note that x(t) is the position of the quasiwalker at time t, averaged over 
all paths. In Section 3 we present in more detail an extension of this 
replication technique to describe the hole and the defect bond separately. 

Before proceeding, let us present these results in terms of the original 
jump rates W~.j, q', and q. For convenience, let us first define the following 
expression: 

N--m--I L Wh+m+l--I'h+m+l 
S(b'm)=- ~ Wb+,,,+t+ , m ~ [ 0 ,  N - 2 ]  (34) 

i = 1  I = 1  l , h + m + /  

S(b, N -  1 ) - 0  (35) 
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m T'[ Wb+m--lh+n~+l I 
T(b,m)=-y ,  11 . . . .  - '  

/=1 W h + m + l - L h + m  -I~ 

T(b, O) =- 0 

m e [ 1 ,  N]  (36) 

(37) 

The last terms of (34) and (36) also appear frequently, so that we define 

N--~-- 1 W h + m + l  - I,h+m+l 
2s (b ,m) -  l ~  Wh+,,,+l+ , m~  [0, N - 2 ]  (38) 

I= I I,h+m+l 

2s(b, N -  1 ) = 0 (39) 

lit 

2r(b,m)=t~= I WI,+ .... i,h+ .... I+l m e [ 1 ,  N] (40) 
= W h + m - I +  I , b + m - - / '  

2r(b, 0) = 1 (41) 

Observe that the above quantities depend on neither q' nor q, and that 
the W's satisfy periodicity (2). As a result, they are also periodic: e.g., 
S(b + N, m) = S(b, m), etc. 

Finally, let 

N Wh 
2--- 11 - ,.h (42) 

h=l mh+l .h  

and 

After some rather tedious algebra, we arrive at the explicit expressions 

1 
rkh +m - Wh+m+ I , h + m  

1 
Ukh+m Wh+m+ l.h+m 

{ U [ l + S ( b , m ) ] + W h _ , . b 2 s ( b , m ) T k h + N  } (44) 

{ U[ 1 + T(b, m)] + q'2r(b, m) akh- ~ + N}, 

m ~ [ 0 ,  N - - 1 ]  (45) 

where 

_ 1 /q, \i-1 { 
r~,,+N=q ~ ~ q 2 )  1 +q' 

i~l  
1 [ l + S ( b + i , O ) ] )  (46) 

Wb+i+l .b+i  



558 Toroczkai and Zia 

and 

- = -  2 1 + T ( b -  i, N)] (47) 
blkh+N q i = 0  

The normalization constant (27) now takes the form 

r - ' =  y w,,+,,,+ 
h =  [ 0 I . h + m  

+ 1 + Wh_c l , , ,~  ~ rk,,+ u (48) 

From (22), we see that the current c can be related 12~ to the velocity of the 
quasiwalker via 

V 
c = - - -  (49) 

M 

with V given by (28). Verifying 

we have 

V = F M U  (51) 

In other words, U from (43) contains the essential information on the 
velocity V. Further, it indicates whether our system satisfies detailed 
balance or not, i.e., if we have an equilibrium or a nonequilibrium steady 
state. The former is the case if and only if c =  0, so that both U and V 
vanish. The condition to stop the motion can be summarized in a simple 
equation: 

q/q' =,~ (52) 

Its interpretation is clear. The left-hand side is the bias in the jump rate 
across the defect bond, while the right-hand side represents the bias in the 
opposite direction across the entire chain of particles. When these balance, 
we have equilibrium. 

In the next section, we will see that the expression (51) for the velocity 
of the quasiwalker plays a central role in determining the velocities of the 
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DB (V bond) and the hole (Vho~) with respect to the chain, as well as the 
relative velocity between the two (Vr~.)- In particular, an extension of the 
method of replicating a finite closed chain will be shown in the derivation 
of these quantities. Following this method, we also can derive the diffusion 
constants for the bond and the hole, Dbond and Dhows, in the same steady- 
state limit. 

3. R E P L I C A T I N G  T H E  FINITE C L O S E D  C H A I N  

In a finite closed chain, a hole will visit the same site infinitely many 
times in the t--* ov limit. As a result, it is not easy to find asymptotic 
properties like steady-state velocities and diffusion constants. To circumvent 
these difficulties, the method used (see, e.g., refs. 2 and 7) is to replicate the 
closed chain into an infinte periodic chain (with periodic jumps rates). 
Since there are infinitely many sites, though many are "equivalent," this 
infinite chain greatly facilitates the computation of asymptotic quantities. 
Here we will generalize this method and arrive at expressions for the 
velocities and diffusion constants of both the DB and the hole. The extra 
complication in our case is that, instead of having one random walker, we 
have two moving objects: the hole and the defect bond. Therefore we have 
to define our replicated model carefully so as not to lose any physical infor- 
mation about the finite closed chain. 

On the infinite chain, the position of both the hole and the DB can 
take arbitrary values, so that they can be found with any distance in 
between. Let us define the position of the DB relative to some arbitrarily 
chosen "origin" to be fl and the distance from the bond to the hole to 
be p. Analogous to b and m, these differ in that fl, p e [ - oo, oo ]. 

Now, the dynamical rules associated with these are not so simple, 
however, since they must reflect the fact that on the closed finite chain the 
DB "advances" by a step each time the hole moves forward N steps. To 
simulate these advances, we introduce an infinite set of "images" of the 
bond, located at multiples of N from the DB. These images serve as "condi- 
tion lines" for the motion of the DB itself, i.e., whenever the hole passes 
through one of these images, the fl changes by unity. Of course, in accord- 
ance with the idea of an image, all the images also move correspondingly. 
In this way, though the two objects can be arbitrarily far apart on the 
replicated chain, the properties, or the structure, of the original chain are 
replicated faithfully. Referring to Fig. 5, it is clear that there are unique 
integers i and j such that 

f l = b + i N  and p = m + j ( N +  l) (53) 
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Fig. 5. The replicated infinite chain. The long, solid vertical line represents the DB's posi- 
tion, while the long, dashed vertical ones show its images, j labels the n u mb er  of complete 
blocks (containing N particles) away from the DB. 

Note that, as expected, b is just ,6' mod(N). Now, j represents the number 
of complete replicas of the original chain lying between the DB and the 
hole, while m is just the distance, as in the previous section, from the hole 
to the nearest bond-image to its left. Let us caution the reader on an extra 
complication associated with the second equation in (53). The reason for 
the factor ( N + I )  lies in our having to distinguish between a hole 
immediately to the left/right of all the images of the DB. Therefore /z 
represents the number of states or positions between the bond and the hole. 
However, the "actual distance," in terms of number of particles (or units of 
lattice constant), between the DB and the hole is only m + j N = p - j  (see 
Fig. 5). In other words, while it is necessary to associate two positions with 
each image for the hole, there is only one "lattice spacing." This subtle 
distincton will be crucial when we compute the velocity and diffusion con- 
stants, both of which must be based on the physical distance. In particular, 
the distance of the hole from the origin of the infinite chain is simply 
/~+/~ - j .  

To distinguish the statistical mechanics of the replicated chain from 
the finite one, we will use the notation P(fl, p; t) for the probability dis- 
tribution. To write down the master equations for P based on the original 
set (3), we first transcribe ~ . , , ,  the transition probability for hole-jumps 
on the replicated chain, Using the periodicity property (2), we see that 
these are simply given by 

~/j  /, 
w~, . , , ,  . ( 5 4 )  
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With the nota t ion  It i = - j ( N +  1), and suppressing t, we define the currents  

-~' - ~ '  - P ( / t , / ~ -  1) -~ '  m:~0: j , , ( e ) -  P(fl, it) ,,,, IV;,,,,_, 
(55) 

m = O: - p - q' + N )  q J , , , (P )  - P(/ t ,  It.j) - P ( p -  ] ,  I t j _ ,  

In terms of  these, the system of  master  equat ions for P(fl, p)  reads 

m = 0: 0,/3(fl, It./) - p = j , , ,+  ,(p) _)(~,(, ,s) 

m :~ 0, N: 0,/3(fl, ,u) = ,t,~+ ,(P) - ] , , ( P )  (56) 

m = N :  O,P(p, i t i + N ) = ~ / ~ + ~ t P ~  -/~ - 
. d ' l , j+l ,  ,--JI,,+N(P) 

3 . 1 .  Positions, Velocities, and Diffusion Constants 

T o  reach our  g o a l  o f  c o m p u t i n g  veloci t ies ,  etc., w e  n e e d  s o m e  n o t i o n  
of positions. For  that,  we introduce the following first moments  of  ~P: 

(p ( t ) )  = y, /;P(/;,/~) (57) 
I t  = - -  ,-1_, f l  = - -  < , ' _  

( i t(n>= ,g Itp(p, it) (58) 
p = - ~  / ) ' = - . ~_ .  

(j(t)}= ~ ~ JP(b',p) (59) 

Is easy to see that  the average position for the DB is just ( / t ( t )} .  For  the 
average distance between the hole and the DB, we define 

( O(t) } = ( i t ( t ) )  - ( j ( t )  ) (60) 

so that the average posit ion of  the hole is 

( h ( t ) )  = ( f l ( t ) }  + ( f i ( t ) )  = ( f l ( t ) )  + ( I t ( t ) )  - ( j ( t ) }  (61) 

The time derivatives of  the moments  defined above can be used to 
compute  velocities: 
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d 
Vbo.d(t) -- ~ ( f l ( t ) )  (62) 

d 
vi,(t) =-- ~ (/2(t) ) (63) 

d 
v/(t) = ~ ( j ( t ) )  (64) 

The first clearly represents the average velocity, with respect to the chain, 
of the DB. Naively, the second can be thought of as the velocity of the hole 
relative to the bond on this infinite chain, since/2 plays the role of m here. 
However, in view of the distinction between/2 and the "actual distance" 
/ 2 - j ,  we emphasize that the "actual velocity" of the hole relative to the 
bond is 

vrr = d  ( 6 ( t ) )  = v,,(t) - v i(t) (65) 

while the hole's velocity relative to the chain itself is 

d 
Vhol~ -- ~ ( h( t ) ) = Vbo.d(t) + V rel( t ) (66) 

The diffusion constants for the DB and for the hole can be found 
similarly: 

d (p(t)) 2) ] dbo.o(t)=l ld ((flz(')))-~( 
1 d ((h(t)) 2)] d,,ot~(t)='~[d ((h2(t)))-~ 

(67) 

(68) 

where 

- -  = f l - O , P ( f l ,  (69) dt [(fl2(t))] ~ " - /2) 
i t =  - - r . c ~  D ' =  - ~ -  

d 2 ~E<h (t)>l= E E (p + /2 - j) ' -  o,P(p, /21 (70) 
I t  = - -  0 2  [ ]  = __ ,~c 

Needless to say, all the six second-order moments are needed (all quadratic 
combinations offl, y, and j). In this paper, we will show explicit calculations 
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for the first-order moments and velocities only, since the computations 
for the second-order moments are considerably lengthier, yet provide no 
additional insight. 

3.2. R e d u c t i o n s  to  t h e  F in i te  Closed Chain  

As the original system consists of only a finite closed chain, it is 
important to make the connection between the replicated infinite chain 
above and the finite one. The simplest way is to note that i and j play the 
role of replica indices. Thus, we have 

P(b,m;t)= ~ ~ ff(fl,/~;t) (71) 
i = - -  ~ .] = o'_, 

To facilitate the discussion of the moments (57)-(59), we define 

~b(b, m) = ~ 

i =  - - o r  . ] =  --o=_, 

so that the positions and velocities are given by 

flP(fl, I~) (72) 

NP(fl, fl) (73) 

N N 

(B(t)) = Y~ E r m) 
h = l  m = O  

N N 

(/2(t)) = 2 2 0 ( b , m )  
h = 1 m = 0 

1 N N 

- 2 2 [O(b,m)-mP(b,m)] (j(t)) N + l b = l  .... 0 

= N +  1 ( / l ( t ) )  - raP(b, m) 
h = 1 m = 0 

N N 

/ ) b o n d ( g )  = ~ ~ O , r k ( b ,  m )  

h =  I m = O  

N N 

v,,(t)= 2 20,~(b,m) 
b = I m = 0 

(74) 

(75) 

(76) 

(77) 

(78) 
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1[  NN ] 
v i ( t ) = ~ - ~  v,,(t)-- ~ ~ mO,P(b,m) (79) 

h = l  I n = 0  

To compute (77)-(79) and the time derivatives of the six second-order 
moments, we should use the master equation for P(b, m) to eliminate O,P 
in favor of the currents and derive similar equations for ~(b, m) and 
r m). Not surprisingly, these equations will comprise of current-like 
terms. Letting 0( be any of the quantities P, ~b, or r we define 

m = O: Job(cO - ~ ( b ,  O) q' - c~(b - 1, N )  q 
(80) 

m~0:  Jl',,=-~(b,m) W~,_,., , ,-ot(b,m-1) W~', ..... , 

and note that these represent the net probability current density from state 
(b, 0) to ( b - 1 ,  N) for m = 0  and (b, m) to (b, m - 1 )  for m ~ 0 ,  respectively. 
Using these, the definitions (71)-(73) and the master equation for P, we 
obtain 

m=0:  O,P(b, 0)=  J~'(P) - jo~(P) 

0 < r e < N :  O,P(b,m)=J~, i, + l ( P )  - -  J,,,(P) (81) 

m N: OtP(b, t,+l h = N) = ~ o  (P) - -  ~ N ( P )  

re=O: O , r 1 6 2 1 6 2  

0 < r e < N :  O,(;(b,m)=J~,+,(~b)-J~,(~) (82) 

re=N: O,ck(b ,N)=Jho+'(~)-J%(~)-P(b+l ,O)q ' 

m=0:  O,qJ (b ,O)=J~(~) -Jho(~ )+P(b- l ,N)q -P(b ,  1) W~., 

0 < r e < N :  O,@(b,m)=J~',,+,(r P ( b , m - 1 )  W~', ..... , 

- P ( b , m +  l) WI',,.,,,+~ (83) 

rn=N: O,~(b ,N)=~+L(Lb)_~hx(~)+p(b ,N_ l  ) h WN.N-- I 

- P ( b + l , O ) q '  

Note that (81) is just (3), as it should be. Now, keeping in mind the peri- 
odicity property P(b+N, m)=P(b, m), we may express the velocities 
(77)-(79) in terms of the probability current density alone: 
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N 

V,,on~(t) = -  ~'. J0~(P) (84) 
h = l  

N N 

v, , ( t )=-  ~ Z J,~,,(P) (85) 
h = 1 m = 0 

v j ( t )  = Vbo.~(t) (86) 

The last of these, obtained by explicit computation, can be understood 
intuitively. Since j measures the net number of times the hole traverses 
around the (finite) chain, while the DB moves one step each time the hole 
crosses it, the displacements in j and the bond are locked. From these, we 
easily arrive at 

Vre.(t) = v,(t) -- v~(t) = v,(t) -- Vbo.d(t) (87) 

and 

Vhol~(t) = V~,(t) (88) 

The t-derivative of the second moments (69) and (70) can be com- 
puted similarly. However, since we are not going to present the technical 
details when calculating the diffusion constants, we will not show these 
second-order moments here, their expressions not giving much insight. 

We only note that these expressions involve sums, as opposed to dif- 
ferences, of terms like Pq and P W, so that they are not simply related to 
the currents. 

These results are general, applicable for all t. Our  interest lies in the 
long-time steady-state limit, which is the focus of the next subsection. 

3.3. Steady-State Limit 

By the.existence assumption made in Section 2.2, in the t--* oe limit, 
we know that P(b, m; t)--* X~,. As for the other two quantities, one can 
make a similar (and very plausible) ansatz as in ref. 2 (besides their exist- 
ence in this limit): 

~b(b, m) ~ COt'm t + ~/ ,  

~,(b, m)--, ,~,t + ~,~,, 
(89) 
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To determine the four unknowns,  we insert these asymptot ic  forms 
into (81)-(83)  and obtain a systems of  equat ions for them. Lett ing 0~ denote  
either co or 2, we have 

m = 0 :  

m q : O , N :  

r e = N :  

For  ~h and ~,h,,, we find n l  

and 

D'/  ~ 0 ;  

m % O , N :  

m = - N :  

0 h =/,,,+,(~)-/~,(~) 

- -  h + l  h 0 - / o  (~)-/N(~) 

(90) 

m = 0 :  

m4:0 ,  N: 

m = N :  

coo~ =/,~(~) -/o~(~) + x,v q 
h h co,,,=/,,,+ ,(,p)-/~,(,x,) 

co~, = / ~ +  '(q~) -- ,,r ~(~/,) -- Xbo + 'q' 

(91) 

y h -  I ~ v h  t l zh  2oh = J ~ ( ~ t ) - - / o h ( ~ )  + . .  N q - - a ,  VVo. , 

h __  h h h b W h L , , - / , , , + , ( ~ ) -  / ~ , ( ~ ) +  x .... , w ........ , -x ' , , ,+,  ....... +, 

h h+ lq ,  , ~ =  f o + ' ( ~ ' ) - / ~ ( ~ +  x ~ _ ,  WN, N- I - -Xo  

(92) 

Now, (90) is the same set of equat ions as X],, so that  co~, and 2,h,, must both 
be propor t ional  to Xih,,. Let us write 

h V h co,,,= bo.d X,,, (93) 

h __  VI ~ h 2,,, - X,,, (94) 

where the constants Vbond and Vt, can be fixed by the normal izat ion condi- 
~.N X h - 1: t ion ~.~= i ~  . . . .  o , , , -  

N N 
h Vbo~ E Z ~o,,, (95) 

/ 5 =  I m = O  

N N 

V~, = Z Z 2,b,, (96) 
b = I m = 0 
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Using (77)-(79) and (89), we arrive at the meaning of these constants: 

d 
Vbo,d = lim ~t(fl(t) ) = lim /)bond(t) (97) 

I ~ c r j  I ~ c t 5  

d 
V~,= lim ~ ( / z ( t ) ) =  lim v,,(t) (98) 

I ~ or.. I ~ c . o  

In a similar way, we have Vi-- l im,  . . . .  d( (v i , ) ) /d t=  Vbo.d, Vr~l= 
VI,- Vbo,d, and Vhole = V,. 

Next, we apply the results from Sections 2.2 and 2.3, namely: 

V 
lim J~,(P)  h = J , , , ( X ) = c =  - - - -  (99) 

and find, from(84)-(85), 

V 
Vbo, d = -- Nc = (100) 

N + I  

V~,= - M c =  V (101) 

V 
VJ=N+ 1 (102) 

N 
Vr~,=-~-~V (103) 

Vhole ----- V (104) 

Note that these results can also be obtained, according to (95) and (96), 
by summing (91) and (92) over m and b. 

Finally, we turn our attention to the diffusion constants (67)-(68) in 
the steady-state limit. The technical details of the calculations, which are 
quite involved, are not shown here. We just present the final expressions for 
these by noting m = ( k - 1 ) m o d ( N +  1): 

t ~ -  - - 

D b o n d  - -  ( N + l ) 2  V flk k k'+k+M Uk~--Irkh--~q 
k = l  k ' = l  k = l  

FV M M + 2  V 
Y'. (ffk_, - ?k)m (105) 

+ ( N +  1)'- k= l 2 ( N + I )  2 

8 2 2 / 8 7 / 3 - 4 - 7  



568 Toroczkai and Zia 

and 

M 

Dhol~=F 2 V ~ flk 
k = l  

Z k'Yk.+~.+M Z fikekff'k+t.k -- -- 
k'~l k=l 

M 

+ F~-N ~ Eff*h-tr\.~-tq-ffk-,r\-, ff'k.k-,] 
k = l  

+ " ~ - ~  (fik_l--t~.)m ( 1 0 6 )  

k = l  

By comparing these formulas with that for the quasiwalker, (29), we find 
the following simple relations 

1 1 
Dbo.d -- tlV + 1 ) - ~  D + ~ A (107) 

and 

Dhol~ = D + A (108) 

where A is given by 

34 

A=FZN ~ Ea*,,-,r\h-,q--~k-,ek-, ff'k.k-,] 
k = l  

/ ' V  M 
(ilk-1 - r k ) m  (109) 

Eliminating A, we can relate the diffusive properties of the hole, the DB, 
and the quasiwalker: 

N 
Dno,,, = (N+ 1 ) Dbo.d + ~ D (110) 

These relationships, together with those for the velocities (100)-(104), 
summarize and confirm our intuitive picture of the asymptotic properties 
associated not only with the physical objects, the impurity (DB) and the 
hole, but also the quasiwalker. In the next section, we analyze some special 
cases in detail in order to illustrate the use of these results. 
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4. SPECIAL CASES 

In this section we consider some simple, yet interesting cases. The 
explicit expressions for the velocities and diffusion constants will be trans- 
parent, painting a clear picture of the physical situation. We restrict our- 
selves to two main limits: (i) the pure asymmetric and symmetric cases and 
(ii) the random symmetric case. In the former, except for jumps across the 
defect bond, the particle-hole exchange rates to the left (right) are uniform, 
given by W_ (W_). Thus, the term "pure asymmetric case" was coined, 
while the "pure symmetric case" consists of a further reduction: W_ -- W_. 
Across the DB, the exchange rates (of any particle with the hole) are kept 
general, q and q', though we also consider the limit q--q,.(6) For case (ii), 
the exchange rate of any particular particle with the hole is randomly 
chosen, but independent of the jump direction--thus the term "random 
symmetric." The random asymmetric case is extremely interesting, being the 
most general. However, its treatment is quite involved and is beyond the 
scope of this paper. 

As we saw in the preceding section, the velocity and diffusion constant 
of the quasiwalker determine almost all the interesting quantities of the 
system. Therefore, we first give these expressions in the particular cases. 

4.1. Pure Asymmetr ic  and Symmetr ic  Cases 

To be specific, for the asymmetric case, we have, for all n 

W,,+I.,,-W_ and W,,_I.,,-W_ (111) 

Since all the hopping rates in each direction are identical, the particles in 
the system are no longer distinguishable. It is meaningless to specify "the 
location of the DB with respect to the chain." We can just as easily regard 
the hole as a particle, suffering biased diffusion (if W~ :~ W_) everywhere 
except across a specific bond (where the bias is q -  q'). The model reduces 
to a simple driven system with a single blockage, Isl so that its properties 
can be relatively easily understood. 

Define 

s~- W_/W~ (112) 

so that 2 = s N [from (42)]. Using the expressions from Sections 2.2-2.3, we 
then find 

rk,,+,,,--(W --_W_) 1 + q _ ~ [ W _ - W _ + q ' ( 1 - 2 ) ]  , 

m ~ [ O , N ]  (113) 
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and 

E ] u ,h+, , , - (W _ W _  ) 1-s"'+t+q_--S--~2(1-2s) , m e [ O , N - 1 ]  (114) 

U 1 - 2s 
u~.~+r,,- - -  , m = N  (115) 

q -  q'2 1 - s  

where U is defined by (43). The normalization constant now takes the form 

W ' 1 -- 2s~ UN W ~ -  _ +q  - q  
F - t - W r Y - W _  N + I +  . . . . .  q - q ' 2  ] ~ s J  

(116) 

Note that, due to the translational invariance of the pure case, the steady- 
state probability distribution X,h,, is independent of b, the DB position. 
Using (28), we find the quasiwalker's velocity V to be 

I 1 ( q - q '  w N+ , -  
V = ( W _  - W~) L 1 + ~ - ~  \ 1 ---2--- (117) 

Since the velocities of the physical objects are directly related to this V, it 
is of interest to point out two appealing aspects of this expression. The 
effect of the impurity clearly affects V at the level of O(1/N). Further, it 
can be completely eliminated by choosing q ' =  W~ and q = W_, where V 
reduces to the expected result: W _ - W _ .  In this limit, the probability 
distribution in fact becomes uniform, i.e., X~',, = 1/M. 

A similar expression for the diffusion constant D can be given. It is 
quite cumbersome and not very transparent. So, instead of providing the 
formula here, let us direct the reader to the general case discussed in 
the last two sections. However, it is easy to check that, if we "eliminate" the 
DB as above, we recover the expected results: D = (W_ + W_)/2, zl = 0, 
Dhole=D, and Dbo,,d=Dhok:/(N+ 1) 2. The first of these was obtained by 
Derrida. ~=) The last equation implies that a reference point (tagged "defect 
bond") on the checkerboard diffuses with respect to the string of particles 
at a rate N -2 times slower than the hole itself. In other words, the string 
of particles, as a whole, has a diffusion constant given by Dbo,O. 

The case pointed out in ref. 6, applicable to the reptation model of a 
polymer with a single driven-intensitive impurity, is given by q ' = q =  B. 
From (117) we see that the impurity reduces the drift velocity by O(1/N). 
For this case, the interesting generalization of our model lies in the study 
of chains with a fixed fraction of holes and/or impurities. 
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From the "pure asymmetric case" we can simplify further to the sym- 
metric limit, in which W_ = W_ -- W with arbitrary q and q'. The corre- 
sponding physical picture is a hole (or a particle) performing simple 
random walk everywhere except across one bond, where it receives an extra 
"kick" of strength q - q '  to the right. Thus, this case can be mapped into 
simple diffusion with open boundaries, coupled to chemical potentials. 
Solving the ordinary diffusion equation with unequal densities at the two 
boundaries is trivial: the result is a linear profile. Indeed, this is reproduced 
here. Setting s = 2 = l, we find the probability distribution: 

X~, _ l  q(N-m)+q'm+ W 
qN+ W 

(118) 

where q =  (q + q')/2 is the average jump rate through the defect bond. The 
velocity, which is related to the current, also takes a simple form: 

q__ qt 
V (119) 

I + N(~/W) 

However, the expressions for the diffusion constants remain rather involved. 
They only simplify with the further restriction q=q' (where clearly the 
probability distribution is uniform and V= 0). Then 

I + N  
D=q 1 + N(q/W) (120) 

with A = 0 ,  Dhows=D, and Dbond=D/(N+ 1) 2. 

4.2. Random Symmetric  Case 

In this part we study the case where the W jump rates are symmetric: 

W,,,j=Wj.,, (121) 

but otherwise randomly chosen out of some distribution. The rates q and 
q' are also kept in general. 

An immediate consequence is 2 = 1. Using the expressions (44)-(47) 
for Fk and tik and introducing 

N 1 
z-- ~. Wl+ct (122) 

/=1 
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for convenience, we arrive at 

gkh § = [ 1 --\qJ(q"~N] [ l i e  ~ + q ' z +  
N .... 1 q 

i =  I V t Z b + m + i . h + m + i  - 

m e [ 0 ,  N]  

(123) 

and 

/ikl, + N -- . . . .  1 -- q--  q' 

q,m _ 1 1 - -  
Ukh + m - -  W h  + m + I , b  + m 

+ 1)+q ' (N-m)  
q__ qt 

(124) 

(125) 

From the normalization constant 

i ( f f l  ,+,z F - I = M  1 -  (126) q - q '  

we obtain the velocity 

V = q - q '  (127) 
l + q z  

This formula also displays some intuitively understandable properties, e.g., 
proportionality to the drive (q-q ' )  and being of O(1/N) I-through 
z ~  O(N)]. As in the previous cases, explicit expressions for the diffusion 
constants are not particularly illuminating and will not be given here. 
However, in the totally symmetric case, i.e., q = q', there is a simplification: 

I + N  
D=q (128) 

1 +zq 

with A =0 ,  DhoLc = D ,  and Obond =D/(N+ 1) 2. 
If the W's are drawn from the distribution p(W),  then the expressions 

for the velocity and diffusion constants are valid in the thermodynamic 
limit N ~  Go with z/N= ~ p(W) dW/W. Finally, we point out the obvious: 
for a ~ distribution, (127) and (128) reduce to (119) and (120). 

5. S U M M A R Y  AND OUTLOOK 

In this paper, we study a generalized asymmetric exclusion process 
(ASEP) (21 to include a directional impurity. The simplest realization consists 
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of a random walker (a hole) on a one-dimensional periodic lattice which 
is otherwise filled with particles. The rates at which the hole exchanges with 
any particular particle i ( i=  1 ..... N) is arbitrary and direction dependent 
(but time independent). In other words, the rate of a particle hop to the 
right, Wi+~.~, can be different from that of a hop to the left, W;_~. i. 
However, across one special bond (which is fixed with respect to the lattice 
and not the string of particles), which we call the "defect bond," the rates 
of particle-hole exchange are fixed at q and q', regardless of which particle 
is involved. In general, the q's are of course unrelated to the W's. In this 
sense, there is an "impurity" in the lattice, associated with the mobility of 
the walker, which breaks translational invariance. 

Though the problem appears to have two degrees of freedom--the 
positions of the hole and the defect bond- -we  show that the associated 
configuration space is, in fact, one dimensional. There is a subtle coupling 
of these two objects into a new entity which we label the quasiwalker. To 
be precise, the location of the bond b and the bond-hole separation m can 
be combined into a single variable k - 1 + (b - 1 ) ( N +  1 ) + m running from 
1 to M = N ( N +  1). A master equation for flk(t), the probability to find the 
system in the state k at time t, can be easily written. Since it is a one- 
dimensional problem, it can be solved and the steady-state distribution 
found explicitly. Further, generalizing a method used in the theory of 
random walks on lattice rings 17"2~ (replication), we are able to find impli- 
citly time-dependent information in the steady state, namely asymptotic 
velocities and diffusion constants associated with both the hole and the 
defect bond. The final expressions, though explicit functions of the q's and 
W's, are rather complicated, so that it is difficult to gain much insight into 
their physical content. Thus, we considered a few special cases, for which 
these explicit formulas display intuitively comprehensible properties of the 
system, such as the order of magnitude of the effects of the impurity. 

Turning our focus to physical realizations of this model, we rely on the 
existing connection between an impurity-free ASEP and the Duke-  
Rubinstein reptation model for gel electrophoresis/s~ There, a polymer is 
thought of as a chain of segments confined to a tube of cells. Each cell may 
contain one or more segments. The links between segments are mapped 
into particles and/or holes in the ASEP in that a link bridging two cells 
corresponds" to a particle encoded with "charge" +_ 1, while a link lying 
within one cell corresponds to a hole. In an external field, the segments 
move preferentially in the direction of the field, a behavior which translates 
into the "pure asymmetric case" of the ASEP. Of  course, in general, 
a polymer will have more than one link lying within a cell, motivating 
the generalization of Derrida's work to a multihole ASEP. I~~ A more 
fundamental difference between a periodic ASEP and gel electrophoresis 
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lies in that open boundary conditions are more appropriate for the latter, 
leading to many changes in the string of "particles" in the ASEP. 
Significantly, a recent work It j) proved rigorously that, to leading order in 
N, the diffusion constant of an open chain coincides with that of the peri- 
odic chain. Thus, the analysis of a periodic chain ~2' ~01 should be taken more 
seriously than as an academic exercise. In a previous publication ~6~ we 
showed that a segment of the polymer which is insensitive to the external 
drive (an impurity) can be mapped into a defect bond in the ASEP. Based 
on the success of the impurity-free ASEP as a model for gel electrophoresis, 
the work here should be further generalized to include multihole and multi- 
impurity cases. The results may be of importance to experiments on the 
drifting of polymers made from a mixture of two different types of 
monomers. 

Other applications of translationally invariant asymmetric exclusion 
processes include, e.g., driven diffusive systems with two species c~21 and 
models of traffic flow. 113.14) Our model, cast in the language of these, would 
correspond to introducing, respectively, a local defect drive or a "gravel 
patch" on the road. Many other interesting phenomena observed in these 
systems are present only in two or more dimensions. It clearly behooves us 
to examine our model in dimensions higher than one. Another obvious 
extension of our study is the effect of open boundary conditions. The 
impurity-free ASEP, even in one dimension, is known to display extremely 
interesting collective behavior such as spontaneous symmetry breaking. ~31 
There is little doubt that our study should be regarded as only a small step 
toward the exploration of the vast unknown of nonequilibrium statistical 
mechanics. 
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